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Abstract In this paper, we establish the Volterra integro-differential forms of the
Lane–Emden equations. We use the variational iteration method (VIM) to effectively
treat these forms. The Volterra integro-differential forms of the Lane–Emden equations
overcome the singular behavior at the origin x = 0 and do not use a variety of Lagrange
multipliers. Several numerical examples are examined to show the validity of the
integro-differential forms.

Keywords Volterra integro-differential equations · Lane–Emden equation ·
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1 Introduction

In this work we will study the Lane–Emden equation of the first kind [1–10]

y′′ + k

x
y′ + ym = 0, y(0) = 1, y′(0) = 0, k > 1. (1)

Moreover, we will examine the Lane–Emden equation of the second kind of the form
[11–20]

y′′ + k

x
y′ + ey = 0, y(0) = 1, y′(0) = 0, k ≥ 1. (2)

Equation (1) is the singular Lane–Emden equation of the first kind, or of index m.
This equation is a basic equation in the theory of stellar structure [2]. It is used in
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astrophysics for computing the structure of interiors of polytropic stars. This equation
describes the temperature variation of a spherical gas cloud under the mutual attraction
of its molecules and subject to the laws of thermodynamics [2,17–19]. In addition,
the Lane–Emden equation of the first kind appears also in other context such as in
the case of radiatively cooling, self-gravitating gas clouds, in the mean-field treatment
of a phase transition in critical adsorption and in the modeling of clusters of galaxies
[17–19].

In [2], it was shown that closed form non-singular solutions exist for (1) when
m = 0, 1, 5. However, for other values of m, we obtain only solutions in the form of
power series. Notice that this equation is linear for m = 0, 1 and nonlinear otherwise.

It is interesting to point out that the Lane–Emden equation of the first kind (1) has
an exact solution for m = 5 of the form

u(x) = ± 1√
2x

, (3)

which is singular [8] at x = 0. This singular solution belongs to a larger class of
singular solutions [8] valid for all Lane–Emden equations with m > 3 given by

u(x) =
(

2(m − 3)

(m − 1)2x2

) 1
m−1

. (4)

Srivista [9] found another solution for m = 5 that can be written in a compact form,
namely

u(x) = ± sin
(
ln

√
x
)

√
3x − 2x sin2

(
ln

√
x
) , (5)

where the scaling transformation gives a whole family of solutions. Note that this
solution is also singular at x = 0, but it can be used in composite stellar models [8].
Moreover, for m = 5, Goenner and Havas [10] found the following expression for
another class of solutions

u(x) = c1√
− x

3 + x℘

(
ln(Bx)

2 ; 4
3 ,− 8

27 + 16c4
1

3

) , (6)

where ℘ denotes the Weierstrass elliptic function, and B and c1 are integration con-
stants.

Equation (2) is the Lane–Emden equation of the second kind that models the non-
dimensional density distribution y(x) in an isothermal gas sphere [9]. In the study of
stellar structures one considers the star as a gaseous sphere in thermodynamic and
hydrostatic equilibrium for a certain equation of state [10]. Using thetransformation
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y → −y (7)

to transforms the Lane–Emden equation of the second kind (2) into

y′′ + 2

x
y′ − e−y = 0, y(0) = y′(0) = 0, (8)

which is capable of describing what is now commonly known as Bonnor–Ebert gas
spheres [9]. However, Richardson [19] used the transformation

x → i x, y → −y (9)

to transform (2) into

y′′ + 2

x
y′ + e−y = 0, y(0) = y′(0) = 0, (10)

that is used in Richardson’s theory [19] of thermionic currents, which is related to the
emission of electricity from hot bodies.

The Lane–Emden equation was first studied by astrophysicists Jonathan Homer
Lane and Robert Emden, where they considered the thermal behavior of a spherical
cloud of gas acting under the mutual attraction of its molecules and subject to the
classical laws of thermodynamics [17–19]. The well-known Lane–Emden equation
has been used to model several phenomena in mathematical physics and astrophysics
such as the theory of stellar structure, the thermal behavior of a spherical cloud of
gas, isothermal gas spheres, the theory of thermionic currents, and in the modeling
of clusters of galaxies. A substantial amount of work has been done on these types
of problems for various structures. The singular behavior that occurs at x = 0 is the
main difficulty of Eqs. (1)–(2).

Our aim in this work is to establish Volterra integro-differential equation equivalent
to the Lane–Emden equation of any kind. The newly established Volterra integro-
differential equation will be treated by using the variational iteration method (VIM).
We will show that using the integro-differential forms facilitate the computational work
and overcomes the singular behavior at x = 0. Moreover, the new integro-differential
forms do not require a variety of Lagrange multipliers as we noticed in our previous
work in [6]. Only we use the Lagrange multiplier λ = −1 for all cases of the shape
factor k. The variational iteration method (VIM) is a well-known systematic method
for solving linear and nonlinear equations, including ordinary differential equations,
partial differential equations, integral equations, integro-differential equations, etc.

2 Volterra integro-differential form of the Lane–Emden equation

In this section, we will first derive an integro-differential form equivalent to the singular
Lane–Emden equation with a shape factor of two. We will further derive the integro-
differential form for the generalized Lane–Emden equation of a generalized shape
factor of k for k ≥ 1. We point out here that in another work [7], Volterra integral
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forms were established for the Lane–Emden equation and the new forms were treated
by using the Adomian decomposition method [21–28].

2.1 The Lane–Emden equation of shape factor of 2

The Lane–Emden equation of shape factor of 2 is

y′′ + 2

x
y′ + f (y) = 0, y(0) = α, y′(0) = 0, (11)

where f (y) can take linear or nonlinear forms.
To convert (11) to a Volterra integro-differential form, we first set

y(x) = α −
x∫

0

t

(
1 − t

x

)
f (y(t)) dt. (12)

Differentiating (12) twice, using the Leibniz rule, gives

y′(x) = −
x∫

0

(
t2

x2

)
f (y(t)) dt,

y′′(x) = − f (y(x)) +
x∫

0

(
2

t2

x3

)
f (y(t)) dt. (13)

Multiplying y′ by 2
x and adding the result to y′′(x) gives the Lane–Emden equation

(11). This shows that the Volterra integro-differential form of the Lane–Emden equa-
tion (11) of shape factor k = 2 is given by

y′(x) = −
x∫

0

(
t2

x2

)
f (y(t)) dt, y(0) = α. (14)

As stated earlier, the Volterra integral form (12) was treated in [7] by using the ADM.

2.2 The Lane–Emden equation of shape factor of k ≥ 1

The generalized Lane–Emden equation of shape factor of k ≥ 1 reads

y′′ + k

x
y′ + f (y) = 0, y(0) = α, y′(0) = 0, k > 1, (15)

where f (y) can take any linear or nonlinear forms.
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To convert (15) to an integro-differential form, we first set

y(x) = α − 1

k − 1

x∫
0

t

(
1 − tk−1

xk−1

)
f (y(t)) dt. (16)

Differentiating (16) twice, using the Leibniz rule, gives

y′(x) = −
x∫

0

(
tk

xk

)
f (y(t)) dt,

y′′(x) = − f (y(x)) +
x∫

0

k

(
tk

xk+1

)
f (y(t)) dt. (17)

Multiplying y′ by k
x and adding the result to y′′(x) gives the generalized Lane–Emden

equation (15). This shows that the Volterra integro-differential form equivalent to the
generalized Lane–Emden equation (15) is given by

y′(x) = −
x∫

0

(
tk

xk

)
f (y(t)) dt, k ≥ 1, y(0) = α. (18)

Recall that the case of the Volterra integral form (16) was treated before in [7] by using
the ADM.

3 Analysis of the method

In what follows, we give a brief presentation of the variational iteration method. The
details of this method are now well known and widely applied in the literature, see for
example [24–26].

Consider the differential equation

Ly + N y = g(t), (19)

where L and N are linear and nonlinear operators respectively, and g(t) is the source
inhomogeneous term.

To use the VIM, a correction functional for Eq. (19) should be used in the form

yn+1(t) = yn(t) +
t∫

0

λ
(
Lyn(ξ) + N ỹn(ξ) − g(ξ)

)
dξ, (20)

where λ is a general Lagrange’s multiplier, which can be identified optimally via the
variational theory, and ỹn as a restricted variation which means δỹn = 0.
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We can easily show that the Lagrange multiplier for the integro-differential equation
(18) is given by

λ = −1. (21)

The successive approximations yn+1, n ≥ 0 of the solution y(x) will be readily
obtained upon using any selective function y0(x). Consequently, the solution

y(x) = lim
n→∞ yn(x). (22)

In other words, the correction functional (20) will give several approximations, and
therefore the exact solution is obtained at the limit of the resulting successive approx-
imations.

The Lane–Emden equation of the first kind, or of the second kind, of shape factor
k is

y′′ + k

x
y′ + f (y) = 0, k ≥ 1, y(0) = α, y′(0) = 0. (23)

This equation can be transformed, by using (18) to the integro-differential equation

y′(x) = −
x∫

0

(
tk

xk

)
f (y(t))dt, k ≥ 1, y(0) = α. (24)

For Eq. (24), the correction functional reads

yn+1(x) = yn(x) −
x∫

0

⎛
⎝y′

n(t) +
t∫

0

rk

tk
f (r) dr

⎞
⎠ dt, y(0) = α, (25)

where we used the Lagrange multiplier λ = −1. Unlike the works in [6], where a
variety of distinct Lagrange multipliers were derived depending on the value of the
shape factor k, the Lagrange multiplier for Eq. (24) does not depend on the shape
factor k and found to be λ = −1.

4 Applications

In what follows we will select some numerical examples and apply the integro-
differential equation form. The first two examples will include the Lane–Emden equa-
tion of the first and the second kind for general shape factor k ≥ 1.

Example 1 We first start with the generalized Lane–Emden equation of the first kind

y′′ + k

x
y′ + ym = 0, k ≥ 1, y(0) = 1, y′(0) = 0. (26)

This equation can be transformed, by using (26) to the integro-differential equation
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y′(x) = −
x∫

0

(
tk

xk

)
ym(t)dt, k ≥ 1, y(0) = 1. (27)

For Eq. (27), the correction functional reads

yn+1(x) = yn(x) −
x∫

0

⎛
⎝y′

n(t) +
t∫

0

rk

tk
ym(r) dr

⎞
⎠ dt, y(0) = 1, (28)

By selecting the zeroth selection y0(x) = 1, and using (28) we list the first few
calculated solution components

y0(x) = 1,

y1(x) = 1 − x2

2(1 + k)
,

y2(x) = 1 − x2

2(1 + k)
+ mx4

8(1 + k)(3 + k)
,

y3(x) = 1 − x2

2(1 + k)
+ mx4

8(1 + k)(3 + k)
− m(−3 + 4m + k(−1 + 2m))x6

48(1 + k)2(3 + k)(5 + k)
,

y4(x) = 1 − x2

2(1 + k)
+ mx4

8(1 + k)(3 + k)
− m(−3 + 4m + k(−1 + 2m))x6

48(1 + k)2(3 + k)(5 + k)

+m
(
30 − 63m+34m2+k2

(
2 − 7m + 6m2

)+2k
(
8 − 23m + 16m2

))
x8

384(1 + k)3(3+k)(5 + k)(7+k)
,

. . . .

Consequently, the generalized solution takes the form

y(x) = 1 − 1

2(1 + k)
x2 + m

8(1 + k)(3 + k)
x4 − m(−3 + 4m + k(−1 + 2m))

48(1 + k)2(3 + k)(5 + k)
x6

+m
(
30 − 63m + 34m2 + k2

(
2 − 7m + 6m2

) + 2k
(
8 − 23m + 16m2

))
384(1 + k)3(3 + k)(5 + k)(7 + k)

x8 + · · · ,

(29)

that works for k ≥ 1.
The following exact solutions

y(x) = 1 − 1

3! x2,

y(x) = sin x

x
,

y(x) =
(

1 + x2

3

)− 1
2

, (30)
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are obtained for m = 0, 1 and 5, respectively and for k = 2. These are the non-singular
exact solutions of the Lane–Emden equation.

Example 2 In this section, we will study the Lane–Emden equation of the second kind

y′′ + k

x
y′ + ey = 0, y(0) = y′(0) = 0, k ≥ 1. (31)

This equation, for k = 2, models the distribution of mass in an isothermal gas sphere
[19]. We will proceed as in the preceding section and solve this equation for certain
cases, where k = 1, 2, 3 and 4.

Case 1: k = 1
To solve the Lane–Emden equation (31) by using the correction functional reads

yn+1(x) = yn(x) −
x∫

0

⎛
⎝y′

n(t) +
t∫

0

r

t
ey0(r)dr

⎞
⎠ dt, y(0) = 0, (32)

Proceeding as before, using the truncated Taylor expansion of ey as

ey = 1 + y + 1

2! y2 + 1

3! y3 + 1

4! y4, (33)

we obtain the following approximations

y0(x) = 0,

y1(x) = − 1

2! x2,

y2(x) = − 1

2! x2 + 1

64
x4 + · · · ,

y3(x) = − 1

2! x2 + 1

64
x4 − 1

768
x6 + · · · ,

y4(x) = − 1

2! x2 + 1

64
x4 − 1

768
x6 + 17

147456
x8 + · · · ,

y5(x) = − 1

2! x2 + 1

64
x4 − 1

768
x6 + 1

8192
x8 + · · · ,

.... (34)

The series solution is therefore given by

y(x) = − 1

2! x2 + 1

64
x4 − 1

768
x6 + 1

8192
x8 + · · · . (35)

We now proceed to solve Lane–Emden equation of the second kind for k = 2.
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Case 2: k = 2
For k = 2, the correction functional reads

yn+1(x) = yn(x) −
x∫

0

⎛
⎝y′

n(t) +
t∫

0

r2

t3 ey0(r)

⎞
⎠ dt, y(0) = 0. (36)

Proceeding as in the previous case, we obtain the following components

y0(x) = 0,

y1(x) = − 1

3! x2,

y2(x) = − 1

3! x2 + 1

5! x4 + · · · ,

y3(x) = − 1

3! x2 + 1

5! x4 − 8

3 × 7! x6 + · · · ,

y4(x) = − 1

3! x2 + 1

5! x4 − 8

3 × 7! x6 + 122

9 × 9! x8,

.... (37)

The series solution is therefore given by

y(x) = − 1

3! x2 + 1

5! x4 − 8

3 × 7! x6 + 122

9 × 9! x8 + · · · . (38)

For the Lane–Emden equation of the second kind for k = 3 and k = 4 we obtained
the following approximations

y(x) = −1

8
x2 + 1

192
x4 − 5

18432
x6 + 23

1474560
x8 + · · · , (39)

and

y(x) = − 1

10
x2 + 1

280
x4 − 1

6300
x6 + 43

5544000
x8 + · · · . (40)

respectively. We can readily observe that the power series approximations are the same
concerning the exponents of x but differ only in the magnitude of the coefficients which
are dependent on the shape factor k.

Example 3 We next consider the Lane–Emden-type equation given by

y′′ + 8

x
y′ + (18y + 4y ln y) = 0, y(0) = 1, y′(0) = 0. (41)
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The Volterra integro-differential form for this equation is

y′(x) +
x∫

0

t8

x8 (18y(t) + 4y(t) ln(y(t))) dt = 0. (42)

The correction functional reads

yn+1(x) = yn(x) −
x∫

0

⎛
⎝y′

n(t) +
t∫

0

r8

t8 (18yn(r) + 4yn(r) ln(yn(r))) dr

⎞
⎠ dt,

y(0) = 1. (43)

By choosing y0(x) = 1, we obtain the following approximations

y0(x) = 1,

y1(x) = 1 − x2,

y2(x) = 1 − x2 + 1

2
x4 − 1

39
x6 − 1

180
x8 + · · · ,

y3(x) = 1 − x2 + 1

2
x4 − 1

6
x6 + 37

2340
x8 + · · · ,

y4(x) = 1 − x2 + 1

2
x4 − 1

6
x6 + 1

24
x8 + · · · ,

.... (44)

The series solution is therefore given by

y(x) = 1 − x2 + 1

2! x4 − 1

3! x6 + 1

4! x8 + · · · , (45)

and this gives the closed form solution

y(x) = e−x2
. (46)

Example 4 We next consider the Lane–Emden-type equation given by

y′′ + 1

x
y′ + (3y5 − y3) = 0, y(0) = 1, y′(0) = 0. (47)

The Volterra integro-differential form for this equation is

y′(x) +
x∫

0

t

x
(3y5(t) − y3(t)) dt = 0. (48)
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The correction functional for the equation reads

yn+1(x)= yn(x) −
x∫

0

⎛
⎝y′

n(t) +
t∫

0

r

t
(3y5

n(r) − y3
n(r)) dr

⎞
⎠ dt, y(0)=1, (49)

By choosing y0(x) = 1, we obtain the following approximations

y0(x) = 1,

y1(x) = 1 − 1

2
x2,

y2(x) = 1 − 1

2
x2 + 3

8
x4 − 3

16
x6 + 29

512
x8 + · · · ,

y3(x) = 1 − 1

2
x2 + 3

8
x4 − 5

16
x6 + 35

128
x8 + · · · ,

.... (50)

The series solution is therefore given by

y(x) = 1 − 1

2
x2 + 3

8
x4 − 5

16
x6 + 35

128
x8 + · · · , (51)

and this gives the closed form solution

y(x) = 1√
1 + x2

. (52)

Example 5 We finally study the system of nonlinear Lane–Emden equations

u′′ + 8

x
u′ + (18u − 4u ln v) = 0,

v′′ + 4

x
v′ + (4v ln u − 10v) = 0, (53)

with initial conditions

u(0) = 1, u′(0) = 0,

v(0) = 1, v′(0) = 0,
(54)

where the shape factors are k1 = 8 and k2 = 4.
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The system of Volterra integro-differential forms of this system is given by

u′(x) +
x∫

0

t8

x8 (18u(t) − 4u(t) ln v(t)) dt = 0,

v′(x) +
x∫

0

t4

x4 (4v(t) ln u(t) − 10v(t)) dt = 0. (55)

Consequently, the system of correction functionals for this system of Volterra integro-
differential equations is The correction functional for the equation reads

un+1(x) = un(x) −
x∫

0

⎛
⎝u′

n(t) +
t∫

0

r8

t8 (18un(r) − 4un(r) ln vn(r)) dr

⎞
⎠ dt,

vn+1(x) = vn(x) −
x∫

0

⎛
⎝v′

n(t) +
t∫

0

r4

t4 (4vn(r) ln un(r) − 10vn(r)(r)) dr

⎞
⎠ dt.

(56)

u0(x) = 1, v0(x) = 1,

u1(x) = 1 − x2, v1(x) = 1 + x2,

u2(x) = 1 − x2 + 1

2! x4 + · · · , v2(x) = 1 + x2 + 1

3! x4 + · · · ,

u3(x) = 1 − x2 + 1

2! x4 − 1

3! x6 + · · · , v3(x) = 1 + x2 + 1

3! x4 + 1

3
x6 + · · · ,

u4(x) = 1 − x2 + 1

2! x4 − 1

3! x6 + 1

4! x8 + · · · ,

v4(x) = 1 + x2 + 1

3! x4 + 1

3
x6 + 1

4! x8 + · · · ,

..., (57)

where truncated Taylor series for ln u and ln v are used to compute the calculations.
This gives the exact solution of (53) by

(u(x), v(x)) = (e−x2
, ex2

). (58)

5 Conclusion

In this work, we established Volterra integro-differential equations equivalent to the
Lane–Emden equations of the first and the second kind. The proposed Volterra integro-
differential form facilitates the computational work and overcomes the difficulty of the
singular behavior at x = 0. Moreover, we used only one Lagrange multiplier λ = −1
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and this also minimized the computational work when compared to our work in [7]. The
Volterra integro-differential form works for all shape factors k ≥ 1. The results which
we obtained, demonstrate the reliability of the established Volterra integro-differential
equations. Numerical examples were examined to confirm the enhancements made by
the established equations.

References

1. A.M. Wazwaz, Analytical solution for the time-dependent Emden-Fowler type of equations by Ado-
mian decomposition method. Appl. Math. Comput. 166, 638–651 (2005)

2. A.M. Wazwaz, A new algorithm for solving differential equations of Lane–Emden type. Appl. Math.
Comput. 118(2/3), 287–310 (2001)

3. A.M. Wazwaz, A new method for solving singular initial value problems in the second-order ordinary
differential equations. Appl. Math. Comput. 128, 47–57 (2002)

4. A.M. Wazwaz, Adomian decomposition method for a reliable treatment of the Emden–Fowler equation.
Appl. Math. Comput. 161, 543–560 (2005)

5. A.M. Wazwaz, The variational iteration method for solving nonlinear singular boundary value problems
arising in various physical models. Commun. Nonlinear Sci. Numer. Simul. 16, 3881–3886 (2011)

6. A.M. Wazwaz, The variational iteration method for solving systems of equations of Emden–Fowler
type. Int. J. Comput. Math. 82(09), 1107–1115 (2011)

7. A.M. Wazwaz, R. Rach, J.-S. Duan, Adomian decomposition method for solving the Volterra integral
form of the Lane–Emden equations with initial values and boundary conditions. Appl. Math. Comput.
(2012, in Press)

8. P. Mach, All solutions of the n = 5 Lane–Emden equations. J. Math. Phys. 53, 062503 (2012)
9. S. Srivastava, On the physical validity of Lane–Emden equation of index 5. Math. Stud. 34, 19–26

(1966)
10. H. Goenner, P. Havas, Exact solutions of the generalized Lane–Emden equation. J. Math. Phys. 41,

7029–7042 (2000)
11. C.M. Khalique, F.M. Mohamed, B. Muatjetjeja, Lagrangian formulation of a generalized Lane–Emden

equation and double reduction. J. Nonlinear Math. Phys. 15(2), 152–161 (2008)
12. B. Muatjetjeja, C.M. Khalique, Exact solutions of the generalized Lane–Emden equations of the first

and second kind. Pramana 77(3), 545–554 (2011)
13. E. Momoniat, C. Harley, Approximate implicit solution of a Lane–Emden equation. New Astron. 11,

520–526 (2006)
14. A. Yildirim, T. Özis, Solutions of singular IVPs of Lane–Emden type by homotopy perturbation method.

Phys. Lett. A 369, 70–76 (2007)
15. M. Dehghan, F. Shakeri, Approximate solution of a differential equation arising in astrophysics using

the variational iteration method. New Astron. 13, 53–59 (2008)
16. K. Parand, M. Shahini, M. Dehghan, Rational Legendre pseudospectral approach for solving nonlinear

differential equations of Lane–Emden type. J. Comput. Phys. 228, 8830–8840 (2009)
17. H.T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962)
18. S. Chandrasekhar, Introduction to the Study of Stellar Structure (Dover, New York, 1967)
19. O.W. Richardson, The Emission of Electricity from Hot Bodies (Longmans Green, London, 1921)
20. G. Adomian, R. Rach, N.T. Shawagfeh, On the analytic solution of the Lane–Emden equation. Found.

Phys. Lett. 8(2), 161–181 (1995)
21. R. Rach, A new definition of the Adomian polynomials. Kybernetes 37(7), 910–955 (2008)
22. J.S. Duan, R. Rach, A new modification of the Adomian decomposition method for solving boundary

value problems for higher order nonlinear differential equations. Appl. Math. Comput. 218, 4090–4118
(2011)

23. J.S. Duan, Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math.
Comput. 217, 2456–2467 (2010)

24. J.S. Duan, R. Rach, New higher-order numerical one-step methods based on the Adomian and the
modified decomposition methods. Appl. Math. Comput. 218, 2810–2828 (2011)

25. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (HEP and Springer, Beijing
and Berlin, 2009)

123



626 J Math Chem (2014) 52:613–626

26. A.M. Wazwaz, A First Course in Integral Equations (World Scientific, Singapore, 1997)
27. A.M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications (HEP and

Springer, Beijing and Berlin, 2011)
28. A.M. Wazwaz, R. Rach, Comparison of the Adomian decomposition method and the variational itera-

tion method for solving the Lane–Emden equations of the first and second kinds. Kybernetes 40(9/10),
1305–1318 (2011)

123


	The variational iteration method for solving the Volterra integro-differential forms of the Lane--Emden equations of the first and the second kind
	Abstract
	1 Introduction
	2 Volterra integro-differential form of the Lane--Emden equation
	2.1 The Lane--Emden equation of shape factor of 2
	2.2 The Lane--Emden equation of shape factor of k ge 1

	3 Analysis of the method
	4 Applications
	5 Conclusion
	References


